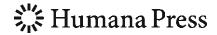
Current Clinical Oncology
Series Editor: Maurie Markman

Amar Safdar Editor

Principles and Practice of Cancer Infectious Diseases


Principles and Practice of Cancer Infectious Diseases

CURRENT CLINICAL ONCOLOGY

Maurie Markman, MD, Series Editor

Amar Safdar Editor

Principles and Practice of Cancer Infectious Diseases

Editor
Amar Safdar
Department of Infectious Diseases,
Infection Control, and Employee Health
The University of Texas
M.D. Anderson Cancer Center
Houston, TX
USA
amarsafdar@gmail.com

ISBN 978-1-60761-643-6 e-ISBN 978-1-60761-644-3 DOI 10.1007/978-1-60761-644-3 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011928679

© Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Humana Press is part of Springer Science+Business Media (www.springer.com)

This book is dedicated for promoting excellence in care and well-being for the patients with cancer.

Preface

Patients with cancer are highly susceptible to infections. These infections are inclined to be difficult to prevent, diagnose, and treat. There are a variety of reasons for this which will be discussed in detail in the chapters of this book. The intent for this book is to provide a comprehensive review of the ever changing spectrum of the management of infectious diseases in this complex population of patients. The changes in patient demography, near-constant global migration of contagious infections, emerging resistance to standard antimicrobial therapy, and the impact of expanding repertoire of antineoplastic therapies including the anticancer biologics and stem cell transplantation have influenced these changes. This book will provide a detailed guide for assessment of risk factors for various infections, evaluating prognosis among susceptible oncology patients with complex issues related to management of opportunistic infections. Strategies to promote hosts' immune response underscore the future measures based on perspicacious insight in the disease pathogenesis; interaction between the pathogen and host's immune function and inflammatory response are given prominent discussion throughout the book. I hope the reader will become acquainted with common and less often encountered infections and importantly, develop a keen knowledge of conditions that might be mistaken as infectious diseases in patients undergoing treatment for neoplastic diseases.

Houston, TX, USA

Amar Safdar, MD

Contents

Part I Overview and Special Population

1	Infections in Patients with Cancer: Overview Amar Safdar, Gerald Bodey, and Donald Armstrong	3
2	Infections in Hematopoietic Stem Cell Transplant Recipients	17
3	Infections in Patients with Hematologic Malignancies Genovefa Papanicolaou and Jayesh Mehta	27
4	Infections in Solid Tumor Patients Alison G. Freifeld	39
5	Infections in Patients with Hematologic Malignancies Treated with Monoclonal Antineoplastic Therapy André Goy and Susan O'Brien	47
6	Postsurgery Infections in Cancer Patients Emilio Bouza, Almudena Burillo, Juan Carlos Lopez-Gutierrez, and José F. Tomás-Martinez	67
7	Management of Infections in Critically Ill Cancer Patients Henry Masur	87
Par	t II Clinical Syndromes	
8	Management of the Neutropenic Patient with Fever	95
9	Controversies in Empiric Therapy of Febrile Neutropenia	105
10	Catheter-Related Infections in Cancer Patients Iba Al Wohoush, Anne-Marie Chaftari, and Issam Raad	113
11	Intravascular Device-Related Infections: Catheter Salvage Strategies and Prevention of Device-Related Infection Nasia Safdar and Dennis G. Maki	123
12	Pneumonia in the Cancer Patient Scott E. Evans and Amar Safdar	143

Contents

13	Noninfectious Lung Infiltrates That May Be Confused with Pneumonia in the Cancer Patient Rana Kaplan, Lara Bashoura, Vickie R. Shannon,	153
	Burton F. Dickey, and Diane E. Stover	
14	Mucosal Barrier Injury and Infections	167
15	Bacterial Colonization and Host Immunity	175
16	Neutropenic Enterocolitis and <i>Clostridium difficile</i> Infections	181
17	Management of Reactivation of Hepatitis B and Hepatitis C During Antineoplastic Therapy Marta Davila and Harrys A. Torres	189
18	Management of Genitourinary Tract Infections	195
19	Central Nervous System Infections in Cancer Patients	207
20	Endocarditis in Oncology Patients	219
21	Skin Disorders Difficult to Distinguish from Infection	233
Par	t III Major Etiologic Agents	
22	Overview of Invasive Fungal Disease in Oncology Patients	257
23	Diagnosis of Invasive Fungal Disease Dionissios Neofytos and Kieren Marr	261
24	Invasive Candidiasis in Management of Infections in Cancer Patients Matteo Bassetti, Malgorzata Mikulska, Juan Gea-Banacloche, and Claudio Viscoli	273
25	Management of Aspergillosis, Zygomycosis, and Other Clinically Relevant Mold Infections Konstantinos Leventakos and Dimitrios P. Kontoyiannis	283
26	Cryptococcal Disease and Endemic Mycosis Johan A. Maertens and Hélène Schoemans	293
27	Current Controversies in the Treatment of Fungal Infections	301

28	Fungal Drug Resistance and Pharmacologic Considerations of Dosing Newer Antifungal Therapies Russell E. Lewis and David S. Perlin	317
29	Immunotherapy for Difficult-to-Treat Invasive Fungal Diseases	331
30	Cytomegalovirus in Patients with Cancer	341
31	Epstein-Barr Virus, Varicella Zoster Virus, and Human Herpes Viruses-6 and -8 Mini Kamboj and David M. Weinstock	359
32	Respiratory Viruses	371
33	BK, JC, and Parvovirus Infections in Patients with Hematologic Malignancies Véronique Erard and Michael Boeckh	387
34	Antiviral Resistance and Implications for Prophylaxis	397
35	Management of Gram-Positive Bacterial Disease: Staphylococcus aureus, Streptococcal, Pneumococcal, and Enterococcal Infections Samuel Shelburne and Daniel M. Musher	409
36	Infections Caused by Aerobic and Anaerobic Gram-Negative Bacilli Kenneth V.I. Rolston, David E. Greenberg, and Amar Safdar	423
37	Listeriosis and Nocardiosis Heather E. Clauss and Bennett Lorber	435
38	Antibacterial Distribution and Drug-Drug Interactions in Cancer Patients Ursula Theuretzbacher and Markus Zeitlinger	443
39	Mycobacterium tuberculous Infection Michael Glickman	455
40	Nontuberculous Mycobacterial Infections	463
41	Parasitic Infections in Cancer Patients: Toxoplasmosis, Strongyloidiasis, and Other Parasites Brian G. Blackburn and José G. Montoya	469
42	Zoonoses in Cancer Patients Donald Armstrong	481

Contents

Par	t IV Management of Antimicrobial Therapy	
43	Antimicrobial Stewardship: Considerations for a Cancer Center	491
44	Controversies in Antimicrobial Stewardship	499
45	Prevention of Antimicrobial Resistance: Current and Future Strategies	507
Par	t V Infection Prevention: Antimicorbial Prophylaxis and Immunization	
46	Antibacterial, Antifungal, and Antiviral Prophylaxis in High-Risk Cancer and Stem Cell Transplant Population	521
47	Controversies in Antimicrobial Prophylaxis	533
48	Infection Prevention – Protected Environment and Infection Control	541
49	Prevention of Tropical and Parasitic Infections: The Immunocompromised Traveler Francesca F. Norman and Rogelio López-Vélez	551
50	Prophylactic Vaccination of Cancer Patients and Hematopoietic Stem Cell Transplant Recipients William Decker and Amar Safdar	561
Ind	PA.	573

Contributors

Javier A. Adachi, M.D.

Department of Infectious Diseases, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Barbara D. Alexander, M.D.

Department of Medicine, Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, NC, USA

Iba Al Wohoush, M.D.

Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA

Cesar A. Arias, M.D.

Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical School at Houston, TX, USA

Donald Armstrong, M.D.

Department of Medicine, Infectious Disease Service, Memorial Sloan–Kettering Cancer Center, New York, NY, USA

Robin K. Avery, M.D.

Department of Infectious Disease, Cleveland Clinic Foundation, Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA

Lara Bashoura, M.D.

Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Matteo Bassetti, M.D., Ph.D.

Division of Infectious Diseases, San Martino Hospital and University of Genoa, Genoa, Italy

Brian G. Blackburn, M.D.

Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA

Nicole M. A. Blijlevens, M.D.

Department of Haematology, Radboud University Nijmegen Medical Centre & Nijmegen University Centre for Infectious Diseases, Nijmegen, The Netherlands

Gerald P. Bodey, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA xiv Contributors

Michael Boeckh, M.D.

Vaccine and Infectious Disease Division, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Emilio Bouza, M.D.

Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid; CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain

Almudena Burrillo, M.D., Ph.D.

Clinical Microbiology Department, Hospital Universitario de Móstoles, Madrid, Spain

Anne-Marie Chaftari, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Roy F. Chemaly, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Susan Chon, M.D.

Department of Dermatology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Ana Ciurea, M.D.

Department of Dermatology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Heather E. Clauss, M.D.

Department of Infectious Diseases, Temple University Hospital, Philadelphia, PA, USA

Sara E. Cosgrove, M.D.

Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Robert Couch, M.D.

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Center for Infection and Immunity Research, Houston, TX, USA

Marta Davila, M.D.

Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

William Decker, Ph.D.

Department of Blood and Marrow Transplantation,

The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Burton F. Dickey, M.D.

Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

J. Peter Donnelly, Ph.D.

Department of Haematology and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands Contributors xv

Herbert L. DuPont, M.D.

Department of Medicine, The University of Texas, School of Public Health, Center for Infectious Diseases; Department of Internal Medicine, St. Luke's Episcopal Hospital; Department of Microbiology and Immunology, Baylor College of Medicine, Houston, TX, USA

Véronique Erard, M.D.

Médecin Adjointe, Infectiologie, HFR-Fribourg, Switzerland

Scott E. Evans, M.D.

Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Graeme N. Forrest, M.D.

Division of Infectious Disease, Portland VA Medical Center, Portland, OR, USA

Alison G. Freifeld, M.D.

Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA

Juan Gea-Banacloche, M.D.

Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD, USA

Michael Glickman, M.D.

Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Andre Goy, M.D.

Hematology/Oncology, Internal Medicine, Hackensack University Medical Center, Hackensack, NJ, USA

Bruno P. Granwehr, M.D.

Department of Infectious Diseases, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

David E. Greenberg, M.D.

Department of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA

Morgan Hakki, M.D.

Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA

Stephen A. Harold

Department of Medicine, The University of Texas, School of Public Health, Center for Infectious Diseases, Houston, TX, USA

Sharone Hymes, M.D.

Department of Dermatology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Mini Kamboj, M.D.

Department of Medicine, Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Rana Kaplan, M.D.

Department of Medicine, Pulmonary Medicine Service, Memorial Sloan–Kettering Cancer Center, New York, NY, USA xvi Contributors

Adolf W. Karchmer, M.D.

Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA

Dimitrios P. Kontoyiannis, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Konstantinos Leventakos, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Russell E. Lewis, Pharm. D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Per Ljungman, M.D.

Hematology Center, Karolinska University, Stockholm, Sweden

Juan Carlos Lopez-Gutierrez, M.D.

Department of Pediatric Surgery, Hospital Universitario Lu Paz, Universidad Autonoma de Madrid, Spain

Rogelio López-Vélez, M.D.

Tropical Medicine and Clinical Parasitology Unit, Department of Infectious Diseases, Ramón y Cajal Hospital, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain

Bennett Lorber, M.D.

Department of Medicine, Section of Infectious Diseases, Temple University School of Medicine, Philadelphia, PA, USA

Johan A. Maertens, M.D., Ph.D.

Department of Hematology, Acute Leukemia and Stem Cell Transplantation Unit, University Hospitals Leuven, Leuven, Belgium

Dennis G. Maki, M.D.

Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA

Maurie Markman, M.D.

Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA

Kieren Marr, M.D.

Division of Infectious Diseases, The Johns Hopkins Hospital, Baltimore, MD, USA

Georg Maschmeyer, M.D.

Department of Hematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany

Henry Masur, M.D.

Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA

Jayesh Mehta, M.D.

Hematopoietic Stem Cell Transplant Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical Center, Chicago, IL, USA

Coralia N. Mihu, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Contributors xvii

Malgorzata Mikulska, M.D.

Division of Infectious Diseases, San Martino Hospital and University of Genoa, Genoa, Italy

José G. Montoya, M.D.

Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA; *Toxoplasma* Serology Laboratory, Palo Alto Medical Foundation, Palo Alto, CA, USA

Victor Mulanovich, M.D.

Infectious Diseases Department, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Daniel M. Musher, M.D.

Departments of Medicine, Microbiology and Immunology, Baylor College of Medicine, Infectious Diseases Section, Veterans Affairs Medical Center, Houston, TX, USA

Dionissios Neofytos, M.D.

Division of Infectious Diseases, The Johns Hopkins Hospital, Baltimore, MD, USA

Francesca F. Norman, M.D.

Tropical Medicine and Clinical Parasitology Unit, Department of Infectious Diseases, Ramón y Cajal Hospital, Madrid, Spain

Marcio Nucci, M.D.

Department of Internal Medicine, Hematology Unit Head, Mycology Laboratory, Hospital Universitário Clementino Fraga Filho – Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Susan O'Brien, M.D.

Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Genovefa Papanicolaou, M.D.

Infectious Diseases Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Alla Paskovaty, Pharm.D.

Infectious Diseases Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Ben de Pauw, M.D.

Institute of Haematology and Clinical Oncology "Lorenzo e Ariosto Seràgnoli", Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy

John R. Perfect, M.D.

Department of Medicine, Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, NC, USA

David S. Perlin, Ph.D.

Department of Clinical Sciences and Administration, College of Pharmacy, University of Houston, Texas Medical Center Campus, Houston, TX, USA; Department of Infectious Disease, Infection Control, and Employee Health, The University of Texas/M.D. Anderson Cancer Center, Houston, TX, USA

Christopher D. Pfeiffer, M.D.

Department of Medicine, Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, NC, USA

Issam Raad, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

xviii Contributors

Dhanesh B. Rathod, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Kenneth V. I. Rolston, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Amar Safdar, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Nasia Safdar, M.D.

Section of Infectious Diseases, Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA

Hélène Schoemans, M.D.

Department of Hematology, Acute Leukemia and Stem Cell Transplantation Unit, University Hospitals Leuven, Leuven, Belgium

Brahm H. Segal, M.D.

Department of Medicine and Immunology, Roswell Park Cancer Institute, Department of Medicine, School of Medicine and Biomedical Sciences, University of Buffalo, Elm & Carlton Streets, Buffalo, NY, USA

Susan K. Seo, M.D.

Infectious Diseases Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Vickie R. Shannon, M.D.

Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Samuel Shelburne, M.D.

Department of Infectious Diseases, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Marta Stanzani, M.D.

Institute of Haematology and Clinical Oncology "Lorenzo e Ariosto Seràgnoli", Sant' Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy

David A. Stevens, M.D.

Department of Medicine, Stanford University School of Medicine Division of Infectious Diseases, Santa Clara Valley Medical Center, Saratoga, CA, USA

Diane E. Stover, M.D.

Department of Medicine, Pulmonary Medicine Service, Memorial Sloan-Kettering, New York, NY, USA

Aruna Subramanian, M.D.

Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Ursula Theuretzbacher, Ph.D.

Center for Anti-Infective Agents, Vienna, Austria

José Francisco Tomaś-Martinez, M.D.

Department of Hematology, The University of Texas M.D. Anderson International España, Madrid, Spain

Contributors xix

Harrys A. Torres, M.D.

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Karen J. Vigil, M.D.

University of Texas Health Science Center, Houston, TX, USA

Claudio Viscoli, M.D.

Division of Infectious Diseases, San Martino Hospital and University of Genoa, Genoa, Italy

David M. Weinstock, M.D.

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

John R. Wingard, M.D.

Department of Medicine, University of Florida, Gainesville, FL, USA

Markus Zeitlinger, M.D.

Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria

Part I Overview and Special Population

Chapter 1 Infections in Patients with Cancer: Overview

Amar Safdar, Gerald Bodey, and Donald Armstrong

Abstract Patients with neoplastic disease are often highly susceptible to severe infections. The following factors influence the types, severity, and response to therapy of these infections: (1) Changing epidemiology of infections; (2) cancerand/or treatment-associated neutropenia; (3) acquired immune deficiency states such as cellular immune defect; (4) recent development of new-generation diagnostic tools including widely available DNA amplification tests; (5) effective intervention for infection prevention; (6) empiric or presumptive therapy during high-risk periods; (7) availability of new classes of highly active antimicrobial drugs; (8) strategies to promote hosts' immune response; and (9) future measures. This introductory chapter intended for the reader to become familiar with the important historical milestones in the understanding and development in the field of infectious diseases in immunosuppressed patients with an underlying neoplasms and patients undergoing hematopoietic stem cell transplantation.

Keywords Cancer • Infection • Neutropenia • Immune defects • Diagnosis • Therapy

Patients with neoplastic disease are often highly susceptible to severe infections. These are inclined to be difficult to prevent, diagnose, and treat. There are a variety of reasons for this which will be discussed in detail in the chapters of this book. We will introduce this volume by reviewing the history and background of such infections, where we believe major advances have been made and what we believe will be necessary to effectively prevent and manage such infections in the future. The following factors influence the types, severity, and response to therapy of these infections: (1) Changing epidemiology of infections; (2) cancer- and/or treatment-associated neutropenia; (3) acquired immune deficiency states such as cellular immune defect; (4) recent development

A. Safdar (\boxtimes)

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA e-mail: amarsafdar@gmail.com

of new-generation diagnostic tools including widely available DNA amplification tests; (5) effective intervention for infection prevention; (6) empiric or presumptive therapy during high-risk periods; (7) availability of new classes of highly active antimicrobial drugs; (8) strategies to promote hosts' immune response; and (9) future measures.

Historical Perspective

The introduction of chemotherapeutic regimens has expanded the population at risk, since many of these agents affect host defenses, most often causing neutropenia. However, even in acute leukemia, the malignancy with the highest frequency of infection, very little was published about infectious complications until the second half of the twentieth century. The paucity of published data is illustrated by a book on acute leukemia, published in 1958, which made no mention of infectious complications [1]. Indeed, at that time, some physicians attributed fevers in leukemia patients to a general hypermetabolic condition caused by the neoplasm.

By the 1950s, several antineoplastic agents became available which caused at least transient improvement in some malignant diseases. Nitrogen mustard caused responses in Hodgkin disease, aminopterin caused responses in acute leukemia, and methotrexate cured choriocarcinoma in women. The subsequent use of multiple drug combinations in acute lymphocytic leukemia and Hodgkin disease represented major advances [2]. Another important advance was the use of platelet transfusions to control and prevent hemorrhage in acute leukemia patients with thrombocytopenia [3]. In an autopsy study, the frequency of hemorrhage as a cause of death in acute leukemia patients decreased from 67 to 37% due to the use of platelet transfusions [4]. Unfortunately, infection remained a major cause of death. There have been many reviews of the subjects over the years, some with international contributors and continuity which are references here [5–11].

Epidemiological Factors

Exposures to organisms in the distant as well as recent past should be considered in patients with neoplastic disease. Latent infections may be activated in the presence of waning immunity whether it be due to the disease itself or to the treatment. The classic example of this is reactivation of latent tuberculous in patients with treatment-induced helper T-cell dysfunction. Additional latent infections which may be activated, for example, are histoplasmosis, coccidiomycosis, disease caused by the Herpes group of viruses, toxoplasmosis, strongyloidiasis, and others. These demand consideration and many such as TB, herpes simplex, and strongyloidiasis can be effectively treated prophylactically. Recent travel or residence and hospitalization may expose patients to organisms which may incubate such as malaria after travel to an endemic area or colonization due to drug-resistant bacteria such as Klebsiella, Pseudomonas, and Stenotrophomonas species acquired during a previous hospitalization. Questions to investigate epidemiologic factors should include exposures at home along with work, habits, and hobbies. Also, a detailed history of recent and remote travel and recreational activities may provide clues for an otherwise improbable diagnosis. All of these can be a source of infection, some of which can be avoided with appropriate patient education.

Hosts' Susceptibility

It is not surprising that the frequency of infection is related to the type of underlying malignancy and most infections occur in patients who are failing to respond to their cancer therapy. Surveys in the 1960s found that about 80% of patients with acute leukemia, 75% with lymphoma, but less than 40% of patients with metastatic carcinoma developed infection [12, 13]. There are a wide variety of factors that may impact on the susceptibility of cancer patients to infection [11]. Local factors such as tumor masses that may obstruct the bronchial tree or urinary tract and necrotic tumors in the gastrointestinal tract can result in infection. In an autopsy study of children with metastatic carcinoma, 80% of cases of pneumonia were associated with pulmonary metastases, aspiration, or tracheostomy [14]. Antibiotic therapy is often of limited efficacy in these types of tumors, unless the local predisposing factor can be removed.

Immunological Factors

Neutropenia is the most important predisposing factor and can be due to the disease or its therapy. While there were some reports of the role of neutropenia in infection, a detailed

analysis of 52 patients with acute leukemia was published in 1966 [15]. This study demonstrated that the risk of infection was related to the degree and duration of neutropenia. The risk increased when the neutrophil count was less than 1,000/ mm³, but increased substantially when it was below 500/ mm³. Also, the risk of developing infection increased the longer the duration of neutropenia. One hundred percent of episodes of severe neutropenia (<100 PMN/mL) lasting 3 weeks or longer were accompanied by identifiable infection compared to 65% of episodes lasting one week. Neutropenia diminishes the likelihood of detecting characteristic manifestations of infection. One study compared physical findings of infection in a group of patients with severe neutropenia with a group with adequate neutrophil counts [16]. Only 8% of patients in the former group with pneumonia were able to produce purulent sputum compared to 84% in the latter group. Similarly, among patients with urinary tract infections, pyuria was found in 11 and 97%, respectively. In an autopsy study, it was demonstrated that many pulmonary infections were not detected on routine chest radiographs antemortem [17]. Likewise, among patients with gram-negative bacillary pneumonia, 85% of those with initially abnormal chest radiographs had >1,000 neutrophils/mL, whereas 81% with normal roentgenograms had <1,000 neutrophils/mL [18]. The lack of signs of infection in febrile neutropenic patients impairs the physician's ability to determine whether or not fever is due to infection. In one study of fever in neutropenic patients, physicians were required to conclude whether infection was present or not before instituting therapy [19]. The physician's initial diagnosis (infection or fever of unknown origin) was incorrect in 33% of the cases.

White blood cell (WBC) transfusions were initiated in an effort to improve the outcome of infections in severely neutropenic patients. Since it was difficult to collect sufficient neutrophils from normal donors, initially, patients with chronic myelogenous leukemia with high neutrophil counts were used as donors [20]. Later, the development of the continuous cell separating machine made it possible to collect adequate cells from normal donors [21]. Studies demonstrated that there was a direct relationship between the number of cells transfused and the increment in the recipient's neutrophil count. In one study of 128 neutropenic patients who had fever unresponsive to antibiotic therapy, 49% responded after WBC transfusions, including patients with pneumonia and gram-negative bacillary septicemia [22]. Unfortunately, potential adverse effects occurred in some recipients. In one study when WBC transfusions were administered with amphotericin B, 64% of patients developed acute dyspnea, respiratory deterioration, and new pulmonary infiltrates compared to only 6% of patients who did not receive amphotericin B [23]. Several other studies failed to observe this toxicity. Another potential adverse event primarily for bone marrow transplant recipients was